深度学习(1)Python手写Numpy神经网络

Posted by qingdujun on 2019-06-09

对神经网络实现时,为了追求效率一般采用向量化技术,而尽可能的减少显式使用for循环的次数。所谓向量化,就是采用矩阵运算来代替循环,将上一篇文章《深度学习(0)Logistics正向、反向传播推导》,向量化如下,

  • $W=\left[w{1}, w{2} \dots w_{m}\right]$
  • $X=\left[x^{(1)}, x^{(2)} \dots x^{(m)}\right]$
  • $B=\left[b, b, \dots b\right]$
  • $Z=\left[z^{(1)}, z^{(2)} \dots z^{(m)}\right]$
  • $A=\left[a^{(1)}, a^{(2)} \dots a^{(m)}\right]$
  • $Y=\left[y^{(1)}, y^{(2)} \dots y^{(m)}\right]$
  • $dW=\left[dw{1}, dw{2} \dots dw_{m}\right]^T$

其中,单个样本$x_i$的维度为n,每一批输入样本个数为m。

反向传播

上一篇文章《深度学习(0)Logistics正向、反向传播推导》已经对$dW$和$dB$进行了详细推导,

这里从向量化角度再简单推导一下,矩阵转置,$Z^T = (W^TX+B)^T=X^TW+B^T$,两边对$W$求导得$dZ^T=X^TdW$,再左右同时“左乘”$X$于是有,$dW = \frac{1}{m} X dZ^T$。注意$dZ$就是变化的微分,也就是$dZ=A-Y$,于是有,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import random
import numpy as np

class Network(object):

def __init__(self, sizes):
self.num_layers = len(sizes)
self.sizes = sizes
self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])]

def feedforward(self, a):
for b, w in zip(self.biases, self.weights):
a = sigmoid(np.dot(w, a)+b)
return a

def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None):
if test_data:
test_data = list(test_data)
n_test = len(test_data)
training_data = list(training_data)
n = len(training_data)
for j in range(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print("Epoch %d: %d / %d"%(j, self.evaluate(test_data), n_test))
else:
print("Epoch %d complete"%j)

def update_mini_batch(self, mini_batch, eta):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)]

def backprop(self, x, y):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
# feedforward
activation = x
activations = [x] # list to store all the activations, layer by layer
zs = [] # list to store all the z vectors, layer by layer
for b, w in zip(self.biases, self.weights):
z = np.dot(w, activation)+b
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])
nabla_b[-1] = delta
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
for l in range(2, self.num_layers):
z = zs[-l]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
nabla_b[-l] = delta
nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla_b, nabla_w)

def evaluate(self, test_data):
test_results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)

def cost_derivative(self, output_activations, y):
return (output_activations-y)

#### Miscellaneous functions
def sigmoid(z):
return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
return sigmoid(z)*(1-sigmoid(z))

Reference:

Neural Networks and Deep Learning